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Abbreviations
EFA	� Essential fatty acid
BO	� Borage oil
Cer1	� Ceramide 1
GLA	� γ-Linolenic acid (18:3n-6)
FA	� Fatty acid
HCO	� Hydrogenated coconut oil
LNA	� Linoleic acid (18:2n-6)
LC	� Liquid chromatography
LC–ESI–MS/MS	� Liquid chromatography coupled with 

electrospray tandem mass spectrometry
m/z	� Mass/charge
MS	� Mass spectrometry

Introduction

Ceramide (Cer) bears the structural moieties of ester-linked 
fatty acids (FA) and amide-linked non-hydroxy, α-hydroxy 
or ω-hydroxy FA on sphingoid bases, of which distinct 
compositions provide the diversity of heterogeneous Cer 
species (Cer1-9) in the epidermis [1]. Of various Cer spe-
cies, Cer1, an acylCer with sphingosine (or sphingenine) 
amide-linked to long chain ω-hydroxy FA, which is, in 
turn, ester-linked to FA, plays a dominant role in maintain-
ing the lamellar integrity of the epidermal barrier [2]. The 
marked depletion of Cer1 is thought to be an etiological 
factor for barrier disruption in abnormal skin conditions 
such as atopic dermatitis (AD) and essential fatty acid 
(EFA) deficiency [1, 3]. Moreover, the barrier disruption 
of EFA deficiency involves the substitution of non EFA for 
EFA ester-linked to ω-hydroxy FA of Cer1 [4].

In view of the functional importance of FA in maintaining 
the lamellar integrity of the epidermal barrier, dietary sup-
plementation of ω-6 EFA is of particular interest. Specially, 
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γ-linolenic acid (GLA; 18:3n-6) has been reported to recover 
the disrupted barrier, and improve the clinical manifestation 
of AD and EFA deficiency [5, 6]. The oxidative metabolites 
of GLA have been reported to exert greater anti-inflamma-
tory or anti-proliferative activities [7] than those of linoleic 
acid (LNA; 18:2n-6), the most abundant ω-6 EFA in human 
skin [7]; therefore borage oil (BO) (Borago officinalis), 
which contains a high concentration of GLA, has become 
popular for skin health [5, 7]. However, in contrast to the 
extensive reports on the functional importance of the LNA 
moiety of Cer1 in maintaining epidermal barrier [2, 4], there 
is only limited information available on the mechanism of 
GLA for recovering the disrupted epidermal barrier in abnor-
mal skin conditions. In this regard, we previously reported 
that dietary supplementation of BO increases Cer synthesis 
and induces the incorporation of dihomo-γ-linolenic acid 
(DGLA; 20:3n-6), the C20 metabolized FA of GLA, into 
total Cer in the epidermis of EFA-deficient guinea pigs [6]. 
To further determine whether GLA or DGLA are ester-
linked to Cer1, EFA-deficient guinea pigs were fed a BO diet 
in this study. The confirmation of ester-linked LNA, GLA, 
DGLA or arachidonic acid (ARA; 20:4n-6), the C20 metab-
olized FA of LNA, in epidermal Cer1, was performed by liq-
uid chromatography coupled with electrospray tandem mass 
spectrometry (LC–ESI–MS/MS).

Materials and Methods

Guinea Pigs and Diet

After 1  week adaptation, fourteen-day-old male Hartley 
guinea pigs were initially fed a diet containing 40  g/kg 
hydrogenated coconut oil (HCO) (Dyets, Bethlehem, PA, 
USA) supplemented with 20 g/kg triolein (Sigma-Aldrich, 
St. Louis, MO, USA) for 8  weeks to induce EFA defi-
ciency, as described previously [6]. At the end of 8 weeks, 
guinea pigs were divided into two groups. Group 1 was fed 
a diet containing 60 g/kg BO (Midlands Seed, Ashburton, 
New Zealand) (group HCO + BO: n = 6), and group 2, the 
EFA-deficient control, continued on the HCO diet (group 
HCO: n = 6) for 2 weeks. Details of the diet composition 
have been published elsewhere [6]. From FA analysis of the 
oils (% of total FA), BO contained 36.5 % LNA and 23.5 % 
GLA, and HCO contained saturated FA only. All aspects 
of animal handling and care procedures were approved by 
the Animal Care and Use Review Committee of Kyung Hee 
University (KHUASP-13-05). At the end of 10 weeks, all 
guinea pigs were sacrificed by cervical dislocation and epi-
dermal strips were obtained, as described previously [6].

Confirmation of EFA Deficiency by FA Analysis

FA composition of epidermal total lipids was analyzed 
for an accumulation of mead acid (20:3n-9) and a ratio 
of mead acid to ARA, biomarkers of EFA deficiency [8]. 
Specifically, epidermal strips were homogenized, and total 
lipids were extracted with chloroform (CHCl3) and metha-
nol (MeOH) (2:1, by vol). Fatty acid composition was ana-
lyzed by gas chromatography (Shimadzu, Kyoto, Japan) 
after transmethylation with 6 % hydrochloride in MeOH, as 
described previously [6]. The separated FA were identified 
and quantitated with external standards of FA methyl ester 
mixtures (GLC-19A, GLC-91, GLC-455) and an internal 
standard of heptadecanoic acid (C17:0) (N-17-M) (Nu-
Check Prep, Elysian, MN, USA).

Table 1   FA composition of total lipids in the epidermis of groups (% 
of total FA)

FA fatty acid, nd not detected
1  Guinea pigs were fed a hydrogenated coconut oil (HCO) diet for 
10 weeks (group HCO) or a HCO diet for 8 weeks followed by a bor-
age oil (BO) diet for 2 weeks (group HCO + BO)
2  Only the major fatty acids are listed
3  Values are mean ± SD (n = 6)
a,b,c  Different superscripts letters in the same row indicate significant 
differences (p < 0.05) using one way ANOVA and Tukey’s honestly 
significant difference (HSD) post hoc test

FA HCO-fed guinea 
pigs for 8 weeks1

Groups1

HCO HCO + BO

16:02 25.03 ± 1.5083a 20.97 ± 1.805b 15.32 ± 2.535c

18:0 14.38 ± 1.375b 20.29 ± 4.753a 15.10 ± 1.930b

18:1n-9 25.48 ± 0.654a 25.61 ± 4.608a 11.65 ± 3.480b

18:2n-6 15.32 ± 1.312b 9.29 ± 2.057c 25.59 ± 4.592a

18:3n-6 nd nd 7.24 ± 0.692

20:3n-9 0.74 ± 0.116b 1.47 ± 0.300a nd

20:3n-6 nd nd 4.49 ± 0.894

20:4n-6 1.71 ± 0.457c 2.76 ± 0.723b 4.71 ± 0.567a

Fig. 1   LC-ESI–MS/MS chromatograms of ceramide 1 (C32 wh:1-
C(X)/d20:1) with C32 ω-hydroxy fatty acid with a double bond 
(C32wh:1) and C20-eicosasphingenine (d20:1). Guinea pigs were fed 
a hydrogenated coconut oil (HCO) diet for 10  weeks (group HCO) 
(a) or a HCO diet for 8 weeks followed by a borage oil (BO) diet for 
2 weeks (group HCO + BO) (b). The epidermal ceramide 1 (Cer1) 
(C32wh:1-C(X)/d20:1) ester-linked with linoleic acid (LNA, 18:2n-
6), γ-linoleic acid (GLA, 18:3n-6), dihomo γ-linoleic acid (DGLA, 
20:3n-6) or arachidonic acid (ARA, 20:4n-6) was analyzed by liquid 
chromatography coupled with electrospray tandem mass spectrom-
etry in the positive mode

▸
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Epidermal Sample Preparation for LC–ESI–MS/MS 
Analysis

Epidermal strips (0.1 g wet weight) were homogenized in 
50 mM Tris–HCl buffer (pH 8.0) containing 10 mM CaCl2 
and 30 units proteinase K (Sigma-Aldrich, St. Louis, MO, 
USA). MeOH and CHCl3 (2:1, by vol) were added and son-
icated, followed by the addition of 100 pmol of Cer (C18:0/
d17:1) as an internal standard [9]. After centrifugation, 
the lower phase was collected, dried down using a Speed 
Vacuum type concentrator (Vision, Seoul, Korea), and dis-
solved in 100 µL of MeOH.

Ceramide 1 Analysis by LC–ESI–MS/MS

Cer1 species were separated by reverse-phase high perfor-
mance liquid chromatography (HPLC) (NANOSPACE SI-2 
HPLC equipped with HTS autosampler Z, Shiseido, Tokyo, 
Japan) using a LUNA C18 column (2.1 ×  150  mm, ID: 
5 μm) (Phenomenex, St. Louis, MO, USA) as described 
previously [10]. The column was pre-equilibrated in sol-
vent A (MeOH/0.05 % formic acid in H2O, 95:5, by vol) 
and lipids were eluted with increasing percentages of sol-
vent B (2-propanol/0.05 % formic acid in MeOH, 99:1, by 
vol) at a flow rate of 0.3 mL/min using a modified method 
by Merrill et al. [9]. Both solvent A and B also contained 
1 mmol/L ammonium formate.

The HPLC column effluent was introduced onto an 
API 3200 triple quadrupole mass spectrometer (Applied 
Biosystems, Foster City, CA, USA) equipped with a 
turbo-ESI in the positive ionization mode for LC–MS/
MS analysis. Because LNA ester-linked Cer1 is mainly 

composed of 20-carbon dihydroxysphingosine with one 
double bond (C20-eicosasphingenine: d20:1, m/z 292) 
[9] and two different amide-linked ω-hydroxy FA (C30 
ω-hydroxy FA: C30wh:0, C32 ω-hydroxy FA with one 
double bond: C32wh:1) [11], the confirmation of ester-
linked LNA, GLA, DGLA or ARA in Cer1 was per-
formed by the Selected Reaction Monitoring (SRM) tran-
sitions (m/z) of these protonated Cer1 species to fragment 
C (loss of amide-linked ω-hydroxy FA) [10]. The levels 
of each FA ester-linked to Cer1 were quantitated using 
the ratio of peak area between each analyte and the inter-
nal standard, and expressed as the ratio between each 
analyte peak area and the internal standard area/g wet 
weight of epidermis.

Further Confirmation of LNA or GLA Ester‑Linked 
Cer1 by Ion Trap MS

LNA or GLA ester-linked to C32wh:1/d20:1 of epidermal 
Cer1 in the HPLC column effluent of group HCO +  BO 
were further confirmed by direct infusion mass spectrom-
etry (DIMS) using an LCQ FLEET ion trap mass spectrom-
eter (Thermo, San Jose, CA, USA) with ESI in the negative 
mode, as described previously [10]. Data was collected by 
the isolation width (m/z 5) and fragmentation with 35  % 
relative collision energy.

Results and Discussion

Mead acid, an abnormal FA generated from oleic acid 
(18:1n-9) during the development of EFA deficiency [8], 

Table 2   Comparative 
composition of PUFA ester-
linked to ceramide 1 in the 
epidermis of groupsa

PUFA polyunsaturated fatty acids, FA fatty acid, Cer1 ceramide 1, nd not detected

* p < 0.05, ** p < 0.01 versus group HCO in the same row by the student’s t test
a  100 pmol of ceramide (C18:0/d17:1) was added as an internal standard in the epidermal sample prepara-
tion for ceramide 1 analysis by liquid chromatography coupled with electrospray tandem mass spectrom-
etry
b  Guinea pigs were fed a hydrogenated coconut oil (HCO) diet for 10 weeks (group HCO) or a HCO diet 
for 8 weeks followed by a borage oil (BO) diet for 2 weeks (group HCO + BO)
c  Comparative values were determined as ratios of peak areas between each analyte and the internal 
standarda/g wet weight of epidermis. Values are means ± SD (n = 6)

Ester-linked PUFA  
of Cer1

Amide-linked FA and sphingoid  
base moiety of Cer1

Groupsb

HCO HCO + BO

18:2n-6 C30wh:0/d20:1 0.27 ± 0.031c 0.46 ± 0.068**

C32wh:1/d20:1 0.49 ± 0.055 0.61 ± 0.100*

18:3n-6 C30wh:0/d20:1 nd nd

C32wh:1/d20:1 nd 0.19 ± 0.033

20:3n-6 C30wh:0/d20:1 nd nd

C32wh:1/d20:1 nd nd

20:4n-6 C30wh:0/d20:1 nd nd

C32wh:1/d20:1 nd nd
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was detected in the epidermis of guinea pigs fed a HCO 
diet for 8  weeks, and further accumulated in group HCO 
(Table  1). In parallel, the ratio of mead acid to ARA 
was increased from 0.43 to 0.53. However, in group 
HCO  +  BO, mead acid was not detected, and levels of 
LNA and ARA were higher than in group HCO. GLA and 
DGLA were also detected. These data, together with a ratio 
of mead acid to ARA of greater than 0.4 diagnosed as EFA 
deficiency [8], indicate that EFA deficiency was evident 
with a HCO diet for more than 8 weeks, and reversed with 
a BO diet for 2 weeks (group HCO + BO).

In LC–ESI–MS/MS analysis, the small peak of LNA 
ester-linked Cer1 was detected in group HCO (Fig.  1a). 
However, in group HCO + BO, LNA or GLA ester-linked 
Cer1 were detected as two distinct peaks with slight dif-
ferent retention times (13.05  min for LNA; 13.14  min 
for GLA; Fig.  1b), which were confirmed by their spe-
cific SRM transition condition, as summarized in Table 2. 

Although LNA was more preferentially ester-linked to 
C32wh:1/d20:1 than C30wh:0/d20:1 of Cer1 in all groups, 
these levels were higher in group HCO + BO than in group 
HCO, reflecting the LNA content of BO (36.5  % LNA 
in BO; no LNA in HCO). GLA was not ester-linked to 
C30wh:0/d20:1 of epidermal Cer1 in group HCO +  BO. 
However, a small but significant level of ester-linked GLA 
was detected in Cer1 with C32wh:1/d20:1 in the epidermis 
of group HCO + BO. DGLA and ARA, C20-metabolized 
FA of GLA and LNA, were not detected in these two Cer1 
species of any group. 

The HPLC effluent of Cer1 species in group HCO + BO 
was further analyzed by ion trap MS, and Fig. 2 represents 
the product ion spectrum obtained in negative ion mode. 
The most abundant signal observed at m/z 279.2 and m/z 
277.2 represented ester-linked LNA (m/z 279.2) and GLA 
(m/z 277.2), respectively. The fragmentation at m/z 802.3 
was from the deprotonated C32wh:1/d20:1 moiety of Cer1, 

Fig. 2   Product ion spectrum 
of linoleic acid or γ-linoleic 
acid ester-linked to C32wh:1/
d20:1 of ceramide 1 in group 
HCO + BO by ion trap MS. 
Guinea pigs were fed a hydro-
genated coconut oil (HCO) 
diet for 8 weeks followed by a 
borage oil (BO) diet for 2 weeks 
in group HCO + BO. The 
liquid chromatography column 
effluent of ceramide 1 (Cer1) 
with C32 ω-hydroxy fatty acid 
with a double bond (C32wh:1) 
and C20-eicosasphingenine 
(d20:1) in group HCO + BO 
was analyzed by ion trap mass 
spectrometry (MS) in the nega-
tive ion mode. a Structure of 
linoleic acid (LNA, 18:2n-6) or 
γ-linoleic acid (GLA, 18:3n-6) 
ester-linked to C32wh:1/d20:1 
moiety of Cer1 b LNA (m/z 
279.2) and GLA (m/z 277.2) 
were presented along with the 
cleaved product ions of the 
deprotonated C32wh:1/d20:1 
moiety (m/z 802.3) from LNA 
ester-linked Cer1 (C32wh:1-
C18:2n-6/d20:1) (m/z 1065.0) 
or GLA ester-linked Cer1 
(C32wh:1-C18:3n-6/d20:1) (m/z 
1063.0). The inset shows an 
enlargement of the spectrum in 
m/z 250–300
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and the subsequent loss of a water molecule resulted in a 
product ion at m/z 784.3. The combined ion signals of m/z 
1065.0 and m/z 1063.0 for either the deprotonated LNA 
ester-linked Cer1 (C32wh:1-C18:2n-6/d20:1) or GLA 
ester-linked Cer1 (C32wh:1-C18:3n-6/d20:1) were also 
detected. Although several cleavage and rearrangement 
reactions resulted in unidentified signals such as m/z 322.3 
and m/z 338.3, these data, along with the lack of GLA 
ester-linked to C30wh:0/d20:1 of Cer1 (Table  2), further 
confirmed that GLA is ester-linked to the C32wh:1/d20:1 
moiety of Cer1. The ion trap MS analysis in the negative 
mode confirmed no DGLA or ARA ester-linked to Cer1.

Distinct from the fractionation of total Cer by high per-
formance thin layer chromatography (HPTLC) in our pre-
vious study [6], further fractionation of Cer1 and species-
specific product ion confirmation of LC–MS analysis were 
employed in the present study, which allowed a more spe-
cific analysis of ester-linked FA in Cer1. The GLA ester-
linked to C32wh:1/d20:1 of Cer1 in group HCO  +  BO 
agrees with a previous study of EFA-deficient rats fed 
the same amount of LNA or columbinic acid (18:3n-6, 
Δ5t,9c,12c) esters for 10  days; similar levels of LNA or 
columbinic acid were incorporated into epidermal acylCer 
[12]. Furthermore, the lack of ester-linked DGLA and ARA 
in the epidermal Cer1 of groups HCO and HCO + BO also 
agrees with no incorporation of ARA into epidermal acyl-
Cer despite dietary supplementation of the same amount 
of either LNA or ARA in EFA-deficient rats [12], which 
supports again that C18 FA is preferentially ester-linked to 
Cer1 [4]. However, despite 36.5 % LNA and 23.5 % GLA 
in BO, the level of GLA ester-linked to C32wh:1 of Cer1 
was approximately 31.1 % of LNA ester-linked to C32wh 
of Cer1. These data, coupled with no incorporation of 
α-linolenic acid (ALA) (18:3n-3) into acylCer in the epi-
dermis of EFA deficient rats fed ALA esters for 13 weeks 
at 2 % of total energy levels [12], suggest that the level of 
C18 FA ester-linked to Cer1 does not simply reflect the 
C18 FA content of dietary oil, but is extremely specific.

In the human epidermis, there are two other acylCer spe-
cies, Cer4 and Cer9 with 6-hydroxysphingosine (Cer4) or 
phytosphingosine (Cer9) amide-linked to ω-hydroxy FA, 
which is, in turn, ester-linked to FA [1]. Although a dis-
rupted lamellar integrity is more related with the depletion 
of Cer1 than that of Cer4, and is not recovered despite the 
presence of Cer4 and Cer9 [3], LNA is highly ester-linked 
to the ω-hydroxy FA moiety of Cer4 and Cer9 [13] as simi-
lar with Cer1; further studies are required in depth to inves-
tigate the substitution of GLA for LA ester-linked to Cer4 

or Cer9, and the significance of GLA ester-linked Cer1 in 
the recovery of a disrupted epidermal barrier. This study 
demonstrated, for the first time, that dietary supplementa-
tion of BO induces GLA ester-linked to C32wh:1 of epi-
dermal Cer1 in EFA-deficient guinea pigs.
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